Papers
Topics
Authors
Recent
2000 character limit reached

Kformer: Knowledge Injection in Transformer Feed-Forward Layers (2201.05742v2)

Published 15 Jan 2022 in cs.CL, cs.AI, cs.DB, cs.IR, and cs.LG

Abstract: Recent days have witnessed a diverse set of knowledge injection models for pre-trained LLMs (PTMs); however, most previous studies neglect the PTMs' own ability with quantities of implicit knowledge stored in parameters. A recent study has observed knowledge neurons in the Feed Forward Network (FFN), which are responsible for expressing factual knowledge. In this work, we propose a simple model, Kformer, which takes advantage of the knowledge stored in PTMs and external knowledge via knowledge injection in Transformer FFN layers. Empirically results on two knowledge-intensive tasks, commonsense reasoning (i.e., SocialIQA) and medical question answering (i.e., MedQA-USMLE), demonstrate that Kformer can yield better performance than other knowledge injection technologies such as concatenation or attention-based injection. We think the proposed simple model and empirical findings may be helpful for the community to develop more powerful knowledge injection methods. Code available in https://github.com/zjunlp/Kformer.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.