Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cut query algorithms with star contraction (2201.05674v1)

Published 14 Jan 2022 in cs.DS, cs.CC, and quant-ph

Abstract: We study the complexity of determining the edge connectivity of a simple graph with cut queries. We show that (i) there is a bounded-error randomized algorithm that computes edge connectivity with $O(n)$ cut queries, and (ii) there is a bounded-error quantum algorithm that computes edge connectivity with $~O(\sqrt{n})$ cut queries. We prove these results using a new technique called "star contraction" to randomly contract edges of a graph while preserving non-trivial minimum cuts. In star contraction vertices randomly contract an edge incident on a small set of randomly chosen vertices. In contrast to the related 2-out contraction technique of Ghaffari, Nowicki, and Thorup [SODA'20], star contraction only contracts vertex-disjoint star subgraphs, which allows it to be efficiently implemented via cut queries. The $O(n)$ bound from item (i) was not known even for the simpler problem of connectivity, and improves the $O(n\log3 n)$ bound by Rubinstein, Schramm, and Weinberg [ITCS'18]. The bound is tight under the reasonable conjecture that the randomized communication complexity of connectivity is $\Omega(n\log n)$, an open question since the seminal work of Babai, Frankl, and Simon [FOCS'86]. The bound also excludes using edge connectivity on simple graphs to prove a superlinear randomized query lower bound for minimizing a symmetric submodular function. Item (ii) gives a nearly-quadratic separation with the randomized complexity and addresses an open question of Lee, Santha, and Zhang [SODA'21]. The algorithm can also be viewed as making $~O(\sqrt{n})$ matrix-vector multiplication queries to the adjacency matrix. Finally, we demonstrate the use of star contraction outside of the cut query setting by designing a one-pass semi-streaming algorithm for computing edge connectivity in the vertex arrival setting. This contrasts with the edge arrival setting where two passes are required.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.