Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Transfer-Tuning: Reusing Auto-Schedules for Efficient Tensor Program Code Generation (2201.05587v2)

Published 14 Jan 2022 in cs.LG, cs.NE, cs.PF, and cs.PL

Abstract: Auto-scheduling for tensor programs is a process where a search algorithm automatically explores candidate schedules (program transformations) for a given program on a target hardware platform to improve its performance. However this can be a very time consuming process depending on the complexity of the tensor program and the capacity of the target device, with often many thousands of program variants being explored. To address this, in this paper we introduce the idea of transfer-tuning, a novel approach to identify and reuse auto-schedules between tensor programs. We demonstrate this concept using Deep Neural Networks (DNNs), taking sets of auto-schedules from pre-tuned DNNs and using them to reduce the inference time of a new DNN. We compare transfer-tuning against the state-of-the-art Ansor auto-scheduler, defining the maximum possible speedup for a given DNN model as what Ansor achieves using its recommended full tuning time. On a server-class CPU and across 11 widely used DNN models, we observe that transfer-tuning achieves up to $88.41\%$ ($49.13\%$ on average) of this maximum speedup, while Ansor requires $6.5\times$ more search time on average to match it. We also evaluate transfer-tuning on a constrained edge CPU and observe that the differences in search time are exacerbated, with Ansor requiring $10.8\times$ more time on average to match transfer-tuning's speedup, which further demonstrates its value. Our code is available at https://www.github.com/gicLAB/transfer-tuning

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com