Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Covering Many (or Few) Edges with k Vertices in Sparse Graphs (2201.05465v3)

Published 14 Jan 2022 in cs.DS and cs.DM

Abstract: We study the following two fixed-cardinality optimization problems (a maximization and a minimization variant). For a fixed $\alpha$ between zero and one we are given a graph and two numbers $k \in \mathbb{N}$ and $t \in \mathbb{Q}$. The task is to find a vertex subset $S$ of exactly $k$ vertices that has value at least (resp. at most for minimization) $t$. Here, the value of a vertex set computes as $\alpha$ times the number of edges with exactly one endpoint in $S$ plus $1-\alpha$ times the number of edges with both endpoints in $S$. These two problems generalize many prominent graph problems, such as Densest $k$-Subgraph, Sparsest $k$-Subgraph, Partial Vertex Cover, and Max ($k$,$n-k$)-Cut. In this work, we complete the picture of their parameterized complexity on several types of sparse graphs that are described by structural parameters. In particular, we provide kernelization algorithms and kernel lower bounds for these problems. A somewhat surprising consequence of our kernelizations is that Partial Vertex Cover and Max $(k,n-k)$-Cut not only behave in the same way but that the kernels for both problems can be obtained by the same algorithms.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.