Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

How I learned to stop worrying and love the curse of dimensionality: an appraisal of cluster validation in high-dimensional spaces (2201.05214v1)

Published 13 Jan 2022 in cs.LG

Abstract: The failure of the Euclidean norm to reliably distinguish between nearby and distant points in high dimensional space is well-known. This phenomenon of distance concentration manifests in a variety of data distributions, with iid or correlated features, including centrally-distributed and clustered data. Unsupervised learning based on Euclidean nearest-neighbors and more general proximity-oriented data mining tasks like clustering, might therefore be adversely affected by distance concentration for high-dimensional applications. While considerable work has been done developing clustering algorithms with reliable high-dimensional performance, the problem of cluster validation--of determining the natural number of clusters in a dataset--has not been carefully examined in high-dimensional problems. In this work we investigate how the sensitivities of common Euclidean norm-based cluster validity indices scale with dimension for a variety of synthetic data schemes, including well-separated and noisy clusters, and find that the overwhelming majority of indices have improved or stable sensitivity in high dimensions. The curse of dimensionality is therefore dispelled for this class of fairly generic data schemes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.