Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Document-level Relation Extraction with Context Guided Mention Integration and Inter-pair Reasoning (2201.04826v1)

Published 13 Jan 2022 in cs.CL

Abstract: Document-level Relation Extraction (DRE) aims to recognize the relations between two entities. The entity may correspond to multiple mentions that span beyond sentence boundary. Few previous studies have investigated the mention integration, which may be problematic because coreferential mentions do not equally contribute to a specific relation. Moreover, prior efforts mainly focus on reasoning at entity-level rather than capturing the global interactions between entity pairs. In this paper, we propose two novel techniques, Context Guided Mention Integration and Inter-pair Reasoning (CGM2IR), to improve the DRE. Instead of simply applying average pooling, the contexts are utilized to guide the integration of coreferential mentions in a weighted sum manner. Additionally, inter-pair reasoning executes an iterative algorithm on the entity pair graph, so as to model the interdependency of relations. We evaluate our CGM2IR model on three widely used benchmark datasets, namely DocRED, CDR, and GDA. Experimental results show that our model outperforms previous state-of-the-art models.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.