Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quasi-Framelets: Robust Graph Neural Networks via Adaptive Framelet Convolution (2201.04728v2)

Published 11 Jan 2022 in cs.LG, cs.AI, cs.NA, and math.NA

Abstract: This paper aims to provide a novel design of a multiscale framelet convolution for spectral graph neural networks (GNNs). While current spectral methods excel in various graph learning tasks, they often lack the flexibility to adapt to noisy, incomplete, or perturbed graph signals, making them fragile in such conditions. Our newly proposed framelet convolution addresses these limitations by decomposing graph data into low-pass and high-pass spectra through a finely-tuned multiscale approach. Our approach directly designs filtering functions within the spectral domain, allowing for precise control over the spectral components. The proposed design excels in filtering out unwanted spectral information and significantly reduces the adverse effects of noisy graph signals. Our approach not only enhances the robustness of GNNs but also preserves crucial graph features and structures. Through extensive experiments on diverse, real-world graph datasets, we demonstrate that our framelet convolution achieves superior performance in node classification tasks. It exhibits remarkable resilience to noisy data and adversarial attacks, highlighting its potential as a robust solution for real-world graph applications. This advancement opens new avenues for more adaptive and reliable spectral GNN architectures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.