Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fine-grained Graph Learning for Multi-view Subspace Clustering (2201.04604v4)

Published 12 Jan 2022 in cs.LG

Abstract: Multi-view subspace clustering (MSC) is a popular unsupervised method by integrating heterogeneous information to reveal the intrinsic clustering structure hidden across views. Usually, MSC methods use graphs (or affinity matrices) fusion to learn a common structure, and further apply graph-based approaches to clustering. Despite progress, most of the methods do not establish the connection between graph learning and clustering. Meanwhile, conventional graph fusion strategies assign coarse-grained weights to combine multi-graph, ignoring the importance of local structure. In this paper, we propose a fine-grained graph learning framework for multi-view subspace clustering (FGL-MSC) to address these issues. To utilize the multi-view information sufficiently, we design a specific graph learning method by introducing graph regularization and a local structure fusion pattern. The main challenge is how to optimize the fine-grained fusion weights while generating the learned graph that fits the clustering task, thus making the clustering representation meaningful and competitive. Accordingly, an iterative algorithm is proposed to solve the above joint optimization problem, which obtains the learned graph, the clustering representation, and the fusion weights simultaneously. Extensive experiments on eight real-world datasets show that the proposed framework has comparable performance to the state-of-the-art methods. The source code of the proposed method is available at https://github.com/siriuslay/FGL-MSC.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com