Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Optimal Best Arm Identification in Two-Armed Bandits with a Fixed Budget under a Small Gap (2201.04469v8)

Published 12 Jan 2022 in stat.ML, cs.LG, econ.EM, math.ST, and stat.TH

Abstract: We consider fixed-budget best-arm identification in two-armed Gaussian bandit problems. One of the longstanding open questions is the existence of an optimal strategy under which the probability of misidentification matches a lower bound. We show that a strategy following the Neyman allocation rule (Neyman, 1934) is asymptotically optimal when the gap between the expected rewards is small. First, we review a lower bound derived by Kaufmann et al. (2016). Then, we propose the "Neyman Allocation (NA)-Augmented Inverse Probability weighting (AIPW)" strategy, which consists of the sampling rule using the Neyman allocation with an estimated standard deviation and the recommendation rule using an AIPW estimator. Our proposed strategy is optimal because the upper bound matches the lower bound when the budget goes to infinity and the gap goes to zero.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.