Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Intra-domain and cross-domain transfer learning for time series data -- How transferable are the features? (2201.04449v1)

Published 12 Jan 2022 in cs.LG

Abstract: In practice, it is very demanding and sometimes impossible to collect datasets of tagged data large enough to successfully train a machine learning model, and one possible solution to this problem is transfer learning. This study aims to assess how transferable are the features between different domains of time series data and under which conditions. The effects of transfer learning are observed in terms of predictive performance of the models and their convergence rate during training. In our experiment, we use reduced data sets of 1,500 and 9,000 data instances to mimic real world conditions. Using the same scaled-down datasets, we trained two sets of machine learning models: those that were trained with transfer learning and those that were trained from scratch. Four machine learning models were used for the experiment. Transfer of knowledge was performed within the same domain of application (seismology), as well as between mutually different domains of application (seismology, speech, medicine, finance). We observe the predictive performance of the models and the convergence rate during the training. In order to confirm the validity of the obtained results, we repeated the experiments seven times and applied statistical tests to confirm the significance of the results. The general conclusion of our study is that transfer learning is very likely to either increase or not negatively affect the predictive performance of the model or its convergence rate. The collected data is analysed in more details to determine which source and target domains are compatible for transfer of knowledge. We also analyse the effect of target dataset size and the selection of model and its hyperparameters on the effects of transfer learning.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.