Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Faithful and Quantitative Notion of Distant Reduction for the Lambda-Calculus with Generalized Applications (2201.04156v4)

Published 11 Jan 2022 in cs.LO

Abstract: We introduce a call-by-name lambda-calculus $\lambda Jn$ with generalized applications which is equipped with distant reduction. This allows to unblock $\beta$-redexes without resorting to the standard permutative conversions of generalized applications used in the original $\Lambda J$-calculus with generalized applications of Joachimski and Matthes. We show strong normalization of simply-typed terms, and we then fully characterize strong normalization by means of a quantitative (i.e. non-idempotent intersection) typing system. This characterization uses a non-trivial inductive definition of strong normalization --related to others in the literature--, which is based on a weak-head normalizing strategy. We also show that our calculus $\lambda Jn$ relates to explicit substitution calculi by means of a faithful translation, in the sense that it preserves strong normalization. Moreover, our calculus $\lambda Jn$ and the original $\Lambda J$-calculus determine equivalent notions of strong normalization. As a consequence, $\lambda J$ inherits a faithful translation into explicit substitutions, and its strong normalization can also be characterized by the quantitative typing system designed for $\lambda Jn$, despite the fact that quantitative subject reduction fails for permutative conversions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube