Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Systematic Literature Review: Quantum Machine Learning and its applications (2201.04093v2)

Published 11 Jan 2022 in quant-ph and cs.LG

Abstract: Quantum computing is the process of performing calculations using quantum mechanics. This field studies the quantum behavior of certain subatomic particles for subsequent use in performing calculations, as well as for large-scale information processing. These capabilities can give quantum computers an advantage in terms of computational time and cost over classical computers. Nowadays, there are scientific challenges that are impossible to perform by classical computation due to computational complexity or the time the calculation would take, and quantum computation is one of the possible answers. However, current quantum devices have not yet the necessary qubits and are not fault-tolerant enough to achieve these goals. Nonetheless, there are other fields like machine learning or chemistry where quantum computation could be useful with current quantum devices. This manuscript aims to present a Systematic Literature Review of the papers published between 2017 and 2023 to identify, analyze and classify the different algorithms used in quantum machine learning and their applications. Consequently, this study identified 94 articles that used quantum machine learning techniques and algorithms. The main types of found algorithms are quantum implementations of classical machine learning algorithms, such as support vector machines or the k-nearest neighbor model, and classical deep learning algorithms, like quantum neural networks. Many articles try to solve problems currently answered by classical machine learning but using quantum devices and algorithms. Even though results are promising, quantum machine learning is far from achieving its full potential. An improvement in the quantum hardware is required since the existing quantum computers lack enough quality, speed, and scale to allow quantum computing to achieve its full potential.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (131)
  1. arXiv:2103.04253.
  2. doi:10.1007/978-3-030-47361-7_3. URL https://doi.org/10.1007/978-3-030-47361-7_3
  3. arXiv:1906.07682, doi:10.1088/2058-9565/ab4eb5.
  4. doi:10.1145/237814.237866. URL https://doi.org/10.1145/237814.237866
  5. doi:10.1137/s0097539795293172. URL http://dx.doi.org/10.1137/S0097539795293172
  6. arXiv:https://doi.org/10.1021/acs.chemrev.8b00803, doi:10.1021/acs.chemrev.8b00803. URL https://doi.org/10.1021/acs.chemrev.8b00803
  7. doi:10.1103/RevModPhys.92.015003. URL https://link.aps.org/doi/10.1103/RevModPhys.92.015003
  8. arXiv:https://doi.org/10.1021/acs.chemrev.9b00829, doi:10.1021/acs.chemrev.9b00829. URL https://doi.org/10.1021/acs.chemrev.9b00829
  9. doi:https://doi.org/10.1016/j.compeleceng.2022.108565. URL https://www.sciencedirect.com/science/article/pii/S0045790622007807
  10. doi:10.1103/PhysRevLett.103.150502. URL https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
  11. doi:10.1103/physrevlett.126.062001. URL http://dx.doi.org/10.1103/PhysRevLett.126.062001
  12. arXiv:2102.05044.
  13. doi:10.1016/j.tcs.2014.05.025. URL https://doi.org/10.1016%2Fj.tcs.2014.05.025
  14. doi:10.1103/revmodphys.81.1301. URL https://doi.org/10.1103%2Frevmodphys.81.1301
  15. doi:10.1103/physrevlett.118.220501. URL https://doi.org/10.1103%2Fphysrevlett.118.220501
  16. doi:10.1038/nature23474. URL http://dx.doi.org/10.1038/nature23474
  17. doi:10.1080/00107514.2014.964942. URL http://dx.doi.org/10.1080/00107514.2014.964942
  18. arXiv:2103.04804.
  19. arXiv:2101.09020.
  20. arXiv:2103.00202.
  21. doi:10.1007/s42452-020-2847-4. URL https://doi.org/10.1007/s42452-020-2847-4
  22. doi:https://doi.org/10.1016/j.tele.2018.09.006. URL http://www.sciencedirect.com/science/article/pii/S0736585318305392
  23. doi:https://doi.org/10.9781/ijimai.2020.05.005. URL http://hdl.handle.net/10366/143081
  24. doi:https://doi.org/10.14201/eks.28600. URL http://repositorio.grial.eu/handle/grial/2568
  25. doi:10.1109/MWC.001.1900341.
  26. doi:https://doi.org/10.1016/j.ijsu.2010.02.007. URL https://www.sciencedirect.com/science/article/pii/S1743919110000403
  27. doi:10.1002/9780470754887.
  28. doi:10.22331/q-2018-08-06-79. URL https://doi.org/10.22331/q-2018-08-06-79
  29. doi:10.32604/cmc.2020.010390.
  30. doi:10.1088/2058-9565/ac3c53. URL https://dx.doi.org/10.1088/2058-9565/ac3c53
  31. arXiv:2107.05808.
  32. doi:10.1007/s11128-021-03029-9.
  33. arXiv:2104.05059.
  34. doi:10.1007/s10773-020-04470-9.
  35. doi:10.1109/tqe.2021.3062494. URL http://dx.doi.org/10.1109/TQE.2021.3062494
  36. doi:10.1142/S0219749918400014.
  37. arXiv:2001.10939, doi:10.1007/s11128-020-02729-y.
  38. arXiv:1905.05929.
  39. arXiv:1911.12207.
  40. arXiv:2106.07198.
  41. doi:10.1109/ISMVL.2018.00040.
  42. doi:10.1088/2058-9565/ab9f93.
  43. arXiv:1912.12486, doi:10.1088/2058-9565/abb8e4.
  44. doi:10.1155/2021/6655455.
  45. arXiv:1609.06935, doi:10.14704/nq.2017.15.1.1008.
  46. arXiv:1807.01235, doi:10.1016/j.ins.2020.05.127.
  47. doi:10.1186/s13638-021-01898-3.
  48. doi:10.1109/TCSII.2021.3126204.
  49. doi:10.1109/ACCESS.2023.3308053.
  50. doi:https://doi.org/10.1016/j.procs.2023.08.171. URL https://www.sciencedirect.com/science/article/pii/S1877050923009365
  51. arXiv:1909.01048, doi:10.1038/s41598-019-48892-w.
  52. J. Bausch, Recurrent quantum neural networks (2020). arXiv:2006.14619.
  53. doi:https://doi.org/10.1016/j.knosys.2020.105863. URL https://www.sciencedirect.com/science/article/pii/S0950705120302252
  54. doi:10.1109/ACCESS.2022.3232307.
  55. doi:10.3389/fphy.2021.755139.
  56. doi:10.1109/TQE.2022.3175267.
  57. doi:10.32604/cmc.2022.024232. URL http://www.techscience.com/cmc/v71n3/46543
  58. arXiv:2209.08167.
  59. arXiv:2301.09138.
  60. doi:10.1016/j.physrep.2022.08.003. URL https://doi.org/10.1016%2Fj.physrep.2022.08.003
  61. doi:10.1007/s42484-020-00033-7. URL http://dx.doi.org/10.1007/s42484-020-00033-7
  62. doi:10.1007/s10773-020-04397-1.
  63. doi:https://doi.org/10.1016/j.jedc.2023.104680. URL https://www.sciencedirect.com/science/article/pii/S0165188923000866
  64. doi:https://doi.org/10.1016/j.neucom.2023.126643. URL https://www.sciencedirect.com/science/article/pii/S092523122300766X
  65. doi:https://doi.org/10.1016/S0364-0213(85)80012-4. URL https://www.sciencedirect.com/science/article/pii/S0364021385800124
  66. doi:10.1038/s41534-019-0157-8. URL http://dx.doi.org/10.1038/s41534-019-0157-8
  67. doi:10.1103/physreva.101.032308. URL http://dx.doi.org/10.1103/PhysRevA.101.032308
  68. doi:10.1038/s41467-021-22539-9. URL https://doi.org/10.1038%2Fs41467-021-22539-9
  69. doi:10.1007/978-1-4757-1904-8.
  70. doi:10.1103/physreva.101.032308. URL https://doi.org/10.1103%2Fphysreva.101.032308
  71. doi:10.1103/physrevlett.122.040504. URL https://doi.org/10.1103%2Fphysrevlett.122.040504
  72. doi:10.1007/s42484-020-00036-4. URL https://doi.org/10.1007%2Fs42484-020-00036-4
  73. doi:10.1038/s41586-019-0980-2. URL https://doi.org/10.1038%2Fs41586-019-0980-2
  74. doi:10.22331/q-2020-10-09-340. URL https://doi.org/10.22331%2Fq-2020-10-09-340
  75. doi:10.1007/978-3-319-78658-2_1.
  76. doi:10.22331/q-2020-02-06-226. URL https://doi.org/10.22331%2Fq-2020-02-06-226
  77. arXiv:https://doi.org/10.1080/1055678021000090033, doi:10.1080/1055678021000090033. URL https://doi.org/10.1080/1055678021000090033
  78. doi:10.1038/ncomms1476.
  79. doi:10.3233/JIFS-179566.
  80. doi:10.1109/5.726791.
  81. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.x, doi:https://doi.org/10.1111/j.1469-1809.1936.tb02137.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
  82. doi:10.1007/s10278-013-9622-7. URL http://dx.doi.org/10.1007/s10278-013-9622-7
  83. doi:10.1016/j.neunet.2012.02.016. URL http://www.sciencedirect.com/science/article/pii/S0893608012000457
  84. R. Bhatt, UCI machine learning repository (2017). URL https://archive.ics.uci.edu/ml/datasets/banknote+authentication
  85. doi:10.1016/j.neunet.2020.07.003.
  86. doi:10.1109/CVPR.2012.6248092.
  87. doi:10.1109/isbi48211.2021.9434062. URL https://doi.org/10.1109%2Fisbi48211.2021.9434062
  88. arXiv:cs.LG/1708.07747.
  89. doi:https://doi.org/10.1016/j.neucom.2021.04.074. URL https://www.sciencedirect.com/science/article/pii/S092523122100624X
  90. arXiv:2106.09415.
  91. doi:10.1103/physrevresearch.3.023010. URL http://dx.doi.org/10.1103/PhysRevResearch.3.023010
  92. arXiv:2103.12010, doi:10.3390/e23040460.
  93. arXiv:2004.14970.
  94. arXiv:1911.08587, doi:10.1117/12.2565038.
  95. doi:10.1109/TNNLS.2019.2938899.
  96. arXiv:1907.00397, doi:10.1109/ACCESS.2020.3010470.
  97. doi:10.1016/j.mattod.2023.02.014.
  98. doi:https://doi.org/10.1016/j.procs.2023.01.235. URL https://www.sciencedirect.com/science/article/pii/S1877050923002351
  99. arXiv:2011.03429, doi:10.1103/PhysRevA.102.052421.
  100. doi:10.1109/TKDE.2021.3130598.
  101. arXiv:2012.03755.
  102. doi:10.1109/TCYB.2021.3131252.
  103. doi:10.1007/s11128-020-02657-x.
  104. arXiv:2003.01695, doi:10.1103/PhysRevA.102.032420.
  105. doi:10.1109/ACCESS.2023.3296802.
  106. arXiv:1801.02363, doi:10.1142/S0219749918400063.
  107. doi:10.1142/S0219749918400130.
  108. doi:10.1109/ACCESS.2023.3318173.
  109. doi:10.1109/ACCESS.2019.2929084.
  110. doi:10.1088/1367-2630/ac66f9. URL https://doi.org/10.1088%2F1367-2630%2Fac66f9
  111. doi:10.1142/S0217979220501969.
  112. doi:10.7249/P0295.
  113. arXiv:1911.00352, doi:10.1103/physrevresearch.3.013063.
  114. doi:10.1007/s10489-019-01604-3.
  115. doi:10.1109/ACCESS.2021.3101214.
  116. doi:10.1088/1674-1056/ac7b1e. URL https://dx.doi.org/10.1088/1674-1056/ac7b1e
  117. arXiv:2212.03937.
  118. arXiv:2112.05821.
  119. arXiv:2209.11514.
  120. arXiv:2301.02690.
  121. arXiv:1707.03429.
  122. M. D. Sajid Anis et al, Qiskit: An open-source framework for quantum computing (2021). doi:10.5281/zenodo.2573505.
  123. arXiv:1608.03355.
  124. C. Developers, CirqSee full list of authors on Github: https://github.com/quantumlib/Cirq/graphs/contributors. doi:10.5281/zenodo.5182845.
  125. arXiv:2003.02989.
  126. doi:10.1007/s42484-020-00017-7.
  127. doi:10.1007/s11128-019-2514-0.
  128. doi:10.1142/S0219749920500240.
  129. arXiv:1901.00848, doi:10.1002/qute.202000003.
  130. doi:10.1109/DSD.2016.30.
  131. doi:10.1088/2632-2153/ac5997. URL https://doi.org/10.1088%2F2632-2153%2Fac5997
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (71)

Summary

We haven't generated a summary for this paper yet.