Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Feature Extraction Framework based on Contrastive Learning with Adaptive Positive and Negative Samples (2201.03942v1)

Published 11 Jan 2022 in cs.LG, cs.AI, and cs.CV

Abstract: In this study, we propose a feature extraction framework based on contrastive learning with adaptive positive and negative samples (CL-FEFA) that is suitable for unsupervised, supervised, and semi-supervised single-view feature extraction. CL-FEFA constructs adaptively the positive and negative samples from the results of feature extraction, which makes it more appropriate and accurate. Thereafter, the discriminative features are re extracted to according to InfoNCE loss based on previous positive and negative samples, which will make the intra-class samples more compact and the inter-class samples more dispersed. At the same time, using the potential structure information of subspace samples to dynamically construct positive and negative samples can make our framework more robust to noisy data. Furthermore, CL-FEFA considers the mutual information between positive samples, that is, similar samples in potential structures, which provides theoretical support for its advantages in feature extraction. The final numerical experiments prove that the proposed framework has a strong advantage over the traditional feature extraction methods and contrastive learning methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)