Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Exploring Pose Estimation as an Auxiliary Learning Task for Visible-Infrared Person Re-identification (2201.03859v2)

Published 11 Jan 2022 in cs.CV

Abstract: Visible-infrared person re-identification (VI-ReID) has been challenging due to the existence of large discrepancies between visible and infrared modalities. Most pioneering approaches reduce intra-class variations and inter-modality discrepancies by learning modality-shared and ID-related features. However, an explicit modality-shared cue, i.e., body keypoints, has not been fully exploited in VI-ReID. Additionally, existing feature learning paradigms imposed constraints on either global features or partitioned feature stripes, which neglect the prediction consistency of global and part features. To address the above problems, we exploit Pose Estimation as an auxiliary learning task to assist the VI-ReID task in an end-to-end framework. By jointly training these two tasks in a mutually beneficial manner, our model learns higher quality modality-shared and ID-related features. On top of it, the learnings of global features and local features are seamlessly synchronized by Hierarchical Feature Constraint (HFC), where the former supervises the latter using the knowledge distillation strategy. Experimental results on two benchmark VI-ReID datasets show that the proposed method consistently improves state-of-the-art methods by significant margins. Specifically, our method achieves nearly 20$\%$ mAP improvements against the state-of-the-art method on the RegDB dataset. Our intriguing findings highlight the usage of auxiliary task learning in VI-ReID.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.