Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Detours in Directed Graphs (2201.03318v1)

Published 10 Jan 2022 in cs.DS and cs.DM

Abstract: We study two "above guarantee" versions of the classical Longest Path problem on undirected and directed graphs and obtain the following results. In the first variant of Longest Path that we study, called Longest Detour, the task is to decide whether a graph has an (s,t)-path of length at least dist_G(s,t)+k (where dist_G(s,t) denotes the length of a shortest path from s to t). Bez\'akov\'a et al. proved that on undirected graphs the problem is fixed-parameter tractable (FPT) by providing an algorithm of running time 2{O (k)} n. Further, they left the parameterized complexity of the problem on directed graphs open. Our first main result establishes a connection between Longest Detour on directed graphs and 3-Disjoint Paths on directed graphs. Using these new insights, we design a 2{O(k)} n{O(1)} time algorithm for the problem on directed planar graphs. Further, the new approach yields a significantly faster FPT algorithm on undirected graphs. In the second variant of Longest Path, namely Longest Path Above Diameter, the task is to decide whether the graph has a path of length at least diam(G)+k (diam(G) denotes the length of a longest shortest path in a graph G). We obtain dichotomy results about Longest Path Above Diameter on undirected and directed graphs. For (un)directed graphs, Longest Path Above Diameter is NP-complete even for k=1. However, if the input undirected graph is 2-connected, then the problem is FPT. On the other hand, for 2-connected directed graphs, we show that Longest Path Above Diameter is solvable in polynomial time for each k\in{1,\dots, 4} and is NP-complete for every k\geq 5. The parameterized complexity of Longest Path Above Diameter on general directed graphs remains an interesting open problem.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.