Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Differentially Private $\ell_1$-norm Linear Regression with Heavy-tailed Data (2201.03204v1)

Published 10 Jan 2022 in cs.LG, cs.CR, and stat.ML

Abstract: We study the problem of Differentially Private Stochastic Convex Optimization (DP-SCO) with heavy-tailed data. Specifically, we focus on the $\ell_1$-norm linear regression in the $\epsilon$-DP model. While most of the previous work focuses on the case where the loss function is Lipschitz, here we only need to assume the variates has bounded moments. Firstly, we study the case where the $\ell_2$ norm of data has bounded second order moment. We propose an algorithm which is based on the exponential mechanism and show that it is possible to achieve an upper bound of $\tilde{O}(\sqrt{\frac{d}{n\epsilon}})$ (with high probability). Next, we relax the assumption to bounded $\theta$-th order moment with some $\theta\in (1, 2)$ and show that it is possible to achieve an upper bound of $\tilde{O}(({\frac{d}{n\epsilon}})\frac{\theta-1}{\theta})$. Our algorithms can also be extended to more relaxed cases where only each coordinate of the data has bounded moments, and we can get an upper bound of $\tilde{O}({\frac{d}{\sqrt{n\epsilon}}})$ and $\tilde{O}({\frac{d}{({n\epsilon})\frac{\theta-1}{\theta}}})$ in the second and $\theta$-th moment case respectively.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube