Multi-Level Attention for Unsupervised Person Re-Identification (2201.03141v1)
Abstract: The attention mechanism is widely used in deep learning because of its excellent performance in neural networks without introducing additional information. However, in unsupervised person re-identification, the attention module represented by multi-headed self-attention suffers from attention spreading in the condition of non-ground truth. To solve this problem, we design pixel-level attention module to provide constraints for multi-headed self-attention. Meanwhile, for the trait that the identification targets of person re-identification data are all pedestrians in the samples, we design domain-level attention module to provide more comprehensive pedestrian features. We combine head-level, pixel-level and domain-level attention to propose multi-level attention block and validate its performance on for large person re-identification datasets (Market-1501, DukeMTMC-reID and MSMT17 and PersonX).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.