Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Self-Supervised Feature Learning from Partial Point Clouds via Pose Disentanglement (2201.03018v1)

Published 9 Jan 2022 in cs.CV

Abstract: Self-supervised learning on point clouds has gained a lot of attention recently, since it addresses the label-efficiency and domain-gap problems on point cloud tasks. In this paper, we propose a novel self-supervised framework to learn informative representations from partial point clouds. We leverage partial point clouds scanned by LiDAR that contain both content and pose attributes, and we show that disentangling such two factors from partial point clouds enhances feature representation learning. To this end, our framework consists of three main parts: 1) a completion network to capture holistic semantics of point clouds; 2) a pose regression network to understand the viewing angle where partial data is scanned from; 3) a partial reconstruction network to encourage the model to learn content and pose features. To demonstrate the robustness of the learnt feature representations, we conduct several downstream tasks including classification, part segmentation, and registration, with comparisons against state-of-the-art methods. Our method not only outperforms existing self-supervised methods, but also shows a better generalizability across synthetic and real-world datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.