Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Constructions of Minimal Binary Linear Codes (2201.02981v1)

Published 9 Jan 2022 in cs.IT and math.IT

Abstract: Recently, minimal linear codes have been extensively studied due to their applications in secret sharing schemes, secure two-party computations, and so on. Constructing minimal linear codes violating the Ashikhmin-Barg condition and then determining their weight distributions have been interesting in coding theory and cryptography. In this paper, a generic construction for binary linear codes with dimension $m+2$ is presented, then a necessary and sufficient condition for this binary linear code to be minimal is derived. Based on this condition and exponential sums, a new class of minimal binary linear codes violating the Ashikhmin-Barg condition is obtained, and then their weight enumerators are determined.

Citations (1)

Summary

We haven't generated a summary for this paper yet.