Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Neighbor2vec: an efficient and effective method for Graph Embedding (2201.02626v1)

Published 7 Jan 2022 in cs.SI and cs.LG

Abstract: Graph embedding techniques have led to significant progress in recent years. However, present techniques are not effective enough to capture the patterns of networks. This paper propose neighbor2vec, a neighbor-based sampling strategy used algorithm to learn the neighborhood representations of node, a framework to gather the structure information by feature propagation between the node and its neighbors. We claim that neighbor2vec is a simple and effective approach to enhancing the scalability as well as equality of graph embedding, and it breaks the limits of the existing state-of-the-art unsupervised techniques. We conduct experiments on several node classification and link prediction tasks for networks such as ogbn-arxiv, ogbn-products, ogbn-proteins, ogbl-ppa,ogbl-collab and ogbl-citation2. The result shows that Neighbor2vec's representations provide an average accuracy scores up to 6.8 percent higher than competing methods in node classification tasks and 3.0 percent higher in link prediction tasks. The neighbor2vec's representations are able to outperform all baseline methods and two classical GNN models in all six experiments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube