Papers
Topics
Authors
Recent
2000 character limit reached

Textual Data Augmentation for Arabic-English Code-Switching Speech Recognition (2201.02550v2)

Published 7 Jan 2022 in cs.CL, cs.SD, and eess.AS

Abstract: The pervasiveness of intra-utterance code-switching (CS) in spoken content requires that speech recognition (ASR) systems handle mixed language. Designing a CS-ASR system has many challenges, mainly due to data scarcity, grammatical structure complexity, and domain mismatch. The most common method for addressing CS is to train an ASR system with the available transcribed CS speech, along with monolingual data. In this work, we propose a zero-shot learning methodology for CS-ASR by augmenting the monolingual data with artificially generating CS text. We based our approach on random lexical replacements and Equivalence Constraint (EC) while exploiting aligned translation pairs to generate random and grammatically valid CS content. Our empirical results show a 65.5% relative reduction in LLM perplexity, and 7.7% in ASR WER on two ecologically valid CS test sets. The human evaluation of the generated text using EC suggests that more than 80% is of adequate quality.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.