Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A sinusoidal signal reconstruction method for the inversion of the mel-spectrogram (2201.02483v1)

Published 7 Jan 2022 in cs.SD and eess.AS

Abstract: The synthesis of sound via deep learning methods has recently received much attention. Some problems for deep learning approaches to sound synthesis relate to the amount of data needed to specify an audio signal and the necessity of preserving both the long and short time coherence of the synthesised signal. Visual time-frequency representations such as the log-mel-spectrogram have gained in popularity. The log-mel-spectrogram is a perceptually informed representation of audio that greatly compresses the amount of information required for the description of the sound. However, because of this compression, this representation is not directly invertible. Both signal processing and machine learning techniques have previously been applied to the inversion of the log-mel-spectrogram but they both caused audible distortions in the synthesized sounds due to issues of temporal and spectral coherence. In this paper, we outline the application of a sinusoidal model to the inversion of the log-mel-spectrogram for pitched musical instrument sounds outperforming state-of-the-art deep learning methods. The approach could be later used as a general decoding step from spectral to time intervals in neural applications.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.