Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Distributed Nash Equilibrium Seeking over Time-Varying Directed Communication Networks (2201.02323v5)

Published 7 Jan 2022 in cs.GT

Abstract: This paper proposes a distributed algorithm to find the Nash equilibrium in a class of non-cooperative convex games with partial-decision information. Our method employs a distributed projected gradient play approach alongside consensus dynamics, with individual agents minimizing their local costs through gradient steps and local information exchange with neighbors via a time-varying directed communication network. Addressing time-varying directed graphs presents significant challenges. Existing methods often circumvent this by focusing on static graphs or specific types of directed graphs or by requiring the stepsizes to scale with the Perron-Frobenius eigenvectors. In contrast, we establish novel results that provide a contraction property for the mixing terms associated with time-varying row-stochastic weight matrices. Our approach explicitly expresses the contraction coefficient based on the characteristics of the weight matrices and graph connectivity structures, rather than implicitly through the second-largest singular value of the weight matrix as in prior studies. The established results facilitate proving geometric convergence of the proposed algorithm and advance convergence analysis for distributed algorithms in time-varying directed communication networks. Numerical results on a Nash-Cournot game demonstrate the efficacy of the proposed method.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube