Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-Behavior Enhanced Recommendation with Cross-Interaction Collaborative Relation Modeling (2201.02307v1)

Published 7 Jan 2022 in cs.IR and cs.AI

Abstract: Many previous studies aim to augment collaborative filtering with deep neural network techniques, so as to achieve better recommendation performance. However, most existing deep learning-based recommender systems are designed for modeling singular type of user-item interaction behavior, which can hardly distill the heterogeneous relations between user and item. In practical recommendation scenarios, there exist multityped user behaviors, such as browse and purchase. Due to the overlook of user's multi-behavioral patterns over different items, existing recommendation methods are insufficient to capture heterogeneous collaborative signals from user multi-behavior data. Inspired by the strength of graph neural networks for structured data modeling, this work proposes a Graph Neural Multi-Behavior Enhanced Recommendation (GNMR) framework which explicitly models the dependencies between different types of user-item interactions under a graph-based message passing architecture. GNMR devises a relation aggregation network to model interaction heterogeneity, and recursively performs embedding propagation between neighboring nodes over the user-item interaction graph. Experiments on real-world recommendation datasets show that our GNMR consistently outperforms state-of-the-art methods. The source code is available at https://github.com/akaxlh/GNMR.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com