Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Efficient Algebraic Two-Level Schwarz Preconditioner For Sparse Matrices (2201.02250v1)

Published 6 Jan 2022 in math.NA and cs.NA

Abstract: Domain decomposition methods are among the most efficient for solving sparse linear systems of equations. Their effectiveness relies on a judiciously chosen coarse space. Originally introduced and theoretically proved to be efficient for self-adjoint operators, spectral coarse spaces have been proposed in the past few years for indefinite and non-self-adjoint operators. This paper presents a new spectral coarse space that can be constructed in a fully-algebraic way unlike most existing spectral coarse spaces. We present theoretical convergence result for Hermitian positive definite diagonally dominant matrices. Numerical experiments and comparisons against state-of-the-art preconditioners in the multigrid community show that the resulting two-level Schwarz preconditioner is efficient especially for non-self-adjoint operators. Furthermore, in this case, our proposed preconditioner outperforms state-of-the-art preconditioners.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.