Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Algebraic Two-Level Schwarz Preconditioner For Sparse Matrices (2201.02250v1)

Published 6 Jan 2022 in math.NA and cs.NA

Abstract: Domain decomposition methods are among the most efficient for solving sparse linear systems of equations. Their effectiveness relies on a judiciously chosen coarse space. Originally introduced and theoretically proved to be efficient for self-adjoint operators, spectral coarse spaces have been proposed in the past few years for indefinite and non-self-adjoint operators. This paper presents a new spectral coarse space that can be constructed in a fully-algebraic way unlike most existing spectral coarse spaces. We present theoretical convergence result for Hermitian positive definite diagonally dominant matrices. Numerical experiments and comparisons against state-of-the-art preconditioners in the multigrid community show that the resulting two-level Schwarz preconditioner is efficient especially for non-self-adjoint operators. Furthermore, in this case, our proposed preconditioner outperforms state-of-the-art preconditioners.

Citations (6)

Summary

We haven't generated a summary for this paper yet.