Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SQUAD: Combining Sketching and Sampling Is Better than Either for Per-item Quantile Estimation (2201.01958v1)

Published 6 Jan 2022 in cs.DS

Abstract: Stream monitoring is fundamental in many data stream applications, such as financial data trackers, security, anomaly detection, and load balancing. In that respect, quantiles are of particular interest, as they often capture the user's utility. For example, if a video connection has high tail latency, the perceived quality will suffer, even if the average and median latencies are low. In this work, we consider the problem of approximating the per-item quantiles. Elements in our stream are (ID, latency) tuples, and we wish to track the latency quantiles for each ID. Existing quantile sketches are designed for a single number stream (e.g., containing just the latency). While one could allocate a separate sketch instance for each ID, this may require an infeasible amount of memory. Instead, we consider tracking the quantiles for the heavy hitters (most frequent items), which are often considered particularly important, without knowing them beforehand. We first present a simple sampling algorithm that serves as a benchmark. Then, we design an algorithm that augments a quantile sketch within each entry of a heavy hitter algorithm, resulting in similar space complexity but with a deterministic error guarantee. Finally, we present SQUAD, a method that combines sampling and sketching while improving the asymptotic space complexity. Intuitively, SQUAD uses a background sampling process to capture the behaviour of the latencies of an item before it is allocated with a sketch, thereby allowing us to use fewer samples and sketches. Our solutions are rigorously analyzed, and we demonstrate the superiority of our approach using extensive simulations.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube