Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Biphasic Face Photo-Sketch Synthesis via Semantic-Driven Generative Adversarial Network with Graph Representation Learning (2201.01592v2)

Published 5 Jan 2022 in cs.CV

Abstract: Biphasic face photo-sketch synthesis has significant practical value in wide-ranging fields such as digital entertainment and law enforcement. Previous approaches directly generate the photo-sketch in a global view, they always suffer from the low quality of sketches and complex photo variations, leading to unnatural and low-fidelity results. In this paper, we propose a novel Semantic-Driven Generative Adversarial Network to address the above issues, cooperating with Graph Representation Learning. Considering that human faces have distinct spatial structures, we first inject class-wise semantic layouts into the generator to provide style-based spatial information for synthesized face photos and sketches. Additionally, to enhance the authenticity of details in generated faces, we construct two types of representational graphs via semantic parsing maps upon input faces, dubbed the IntrA-class Semantic Graph (IASG) and the InteR-class Structure Graph (IRSG). Specifically, the IASG effectively models the intra-class semantic correlations of each facial semantic component, thus producing realistic facial details. To preserve the generated faces being more structure-coordinated, the IRSG models inter-class structural relations among every facial component by graph representation learning. To further enhance the perceptual quality of synthesized images, we present a biphasic interactive cycle training strategy by fully taking advantage of the multi-level feature consistency between the photo and sketch. Extensive experiments demonstrate that our method outperforms the state-of-the-art competitors on the CUFS and CUFSF datasets.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube