Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Testing a QUBO Formulation of Core-periphery Partitioning on a Quantum Annealer (2201.01543v1)

Published 5 Jan 2022 in cs.SI, physics.data-an, and quant-ph

Abstract: We propose a new kernel that quantifies success for the task of computing a core-periphery partition for an undirected network. Finding the associated optimal partitioning may be expressed in the form of a quadratic unconstrained binary optimization (QUBO) problem, to which a state-of-the-art quantum annealer may be applied. We therefore make use of the new objective function to (a) judge the performance of a quantum annealer, and (b) compare this approach with existing heuristic core-periphery partitioning methods. The quantum annealing is performed on the commercially available D-Wave machine. The QUBO problem involves a full matrix even when the underlying network is sparse. Hence, we develop and test a sparsified version of the original QUBO which increases the available problem dimension for the quantum annealer. Results are provided on both synthetic and real data sets, and we conclude that the QUBO/quantum annealing approach offers benefits in terms of optimizing this new quantity of interest.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.