Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Additive Approximation Scheme for the Nash Social Welfare Maximization with Identical Additive Valuations (2201.01419v1)

Published 5 Jan 2022 in cs.DS and cs.GT

Abstract: We study the problem of efficiently and fairly allocating a set of indivisible goods among agents with identical and additive valuations for the goods. The objective is to maximize the Nash social welfare, which is the geometric mean of the agents' valuations. While maximizing the Nash social welfare is NP-hard, a PTAS for this problem is presented by Nguyen and Rothe. The main contribution of this paper is to design a first additive PTAS for this problem, that is, we give a polynomial-time algorithm that maximizes the Nash social welfare within an additive error $\varepsilon v_{\rm max}$, where $\varepsilon$ is an arbitrary positive number and $v_{\rm max}$ is the maximum utility of a good. The approximation performance of our algorithm is better than that of a PTAS. The idea of our algorithm is simple; we apply a preprocessing and then utilize an additive PTAS for the target load balancing problem given recently by Buchem et al. However, a nontrivial amount of work is required to evaluate the additive error of the output.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.