Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sparse-Dyn: Sparse Dynamic Graph Multi-representation Learning via Event-based Sparse Temporal Attention Network (2201.01384v2)

Published 4 Jan 2022 in cs.LG

Abstract: Dynamic graph neural networks have been widely used in modeling and representation learning of graph structure data. Current dynamic representation learning focuses on either discrete learning which results in temporal information loss or continuous learning that involves heavy computation. In this work, we proposed a novel dynamic graph neural network, Sparse-Dyn. It adaptively encodes temporal information into a sequence of patches with an equal amount of temporal-topological structure. Therefore, while avoiding the use of snapshots which causes information loss, it also achieves a finer time granularity, which is close to what continuous networks could provide. In addition, we also designed a lightweight module, Sparse Temporal Transformer, to compute node representations through both structural neighborhoods and temporal dynamics. Since the fully-connected attention conjunction is simplified, the computation cost is far lower than the current state-of-the-arts. Link prediction experiments are conducted on both continuous and discrete graph datasets. Through comparing with several state-of-the-art graph embedding baselines, the experimental results demonstrate that Sparse-Dyn has a faster inference speed while having competitive performance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.