Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parity-based Cumulative Fairness-aware Boosting (2201.01148v1)

Published 4 Jan 2022 in cs.LG and cs.AI

Abstract: Data-driven AI systems can lead to discrimination on the basis of protected attributes like gender or race. One reason for this behavior is the encoded societal biases in the training data (e.g., females are underrepresented), which is aggravated in the presence of unbalanced class distributions (e.g., "granted" is the minority class). State-of-the-art fairness-aware machine learning approaches focus on preserving the \emph{overall} classification accuracy while improving fairness. In the presence of class-imbalance, such methods may further aggravate the problem of discrimination by denying an already underrepresented group (e.g., \textit{females}) the fundamental rights of equal social privileges (e.g., equal credit opportunity). To this end, we propose AdaFair, a fairness-aware boosting ensemble that changes the data distribution at each round, taking into account not only the class errors but also the fairness-related performance of the model defined cumulatively based on the partial ensemble. Except for the in-training boosting of the group discriminated over each round, AdaFair directly tackles imbalance during the post-training phase by optimizing the number of ensemble learners for balanced error performance (BER). AdaFair can facilitate different parity-based fairness notions and mitigate effectively discriminatory outcomes. Our experiments show that our approach can achieve parity in terms of statistical parity, equal opportunity, and disparate mistreatment while maintaining good predictive performance for all classes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.