Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

McXai: Local model-agnostic explanation as two games (2201.01044v2)

Published 4 Jan 2022 in cs.LG and cs.AI

Abstract: To this day, a variety of approaches for providing local interpretability of black-box machine learning models have been introduced. Unfortunately, all of these methods suffer from one or more of the following deficiencies: They are either difficult to understand themselves, they work on a per-feature basis and ignore the dependencies between features and/or they only focus on those features asserting the decision made by the model. To address these points, this work introduces a reinforcement learning-based approach called Monte Carlo tree search for eXplainable Artificial Intelligent (McXai) to explain the decisions of any black-box classification model (classifier). Our method leverages Monte Carlo tree search and models the process of generating explanations as two games. In one game, the reward is maximized by finding feature sets that support the decision of the classifier, while in the second game, finding feature sets leading to alternative decisions maximizes the reward. The result is a human friendly representation as a tree structure, in which each node represents a set of features to be studied with smaller explanations at the top of the tree. Our experiments show, that the features found by our method are more informative with respect to classifications than those found by classical approaches like LIME and SHAP. Furthermore, by also identifying misleading features, our approach is able to guide towards improved robustness of the black-box model in many situations.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube