Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

HWRCNet: Handwritten Word Recognition in JPEG Compressed Domain using CNN-BiLSTM Network (2201.00947v3)

Published 4 Jan 2022 in cs.CV and eess.IV

Abstract: Handwritten word recognition from document images using deep learning is an active research area in the field of Document Image Analysis and Recognition. In the present era of Big data, since more and more documents are being generated and archived in the compressed form to provide better storage and transmission efficiencies, the problem of word recognition in the respective compressed domain without decompression becomes very challenging. The traditional methods employ decompression and then apply learning algorithms over them, therefore, novel algorithms are to be designed in order to apply learning techniques directly in the compressed representations/domains. In this direction, this research paper proposes a novel HWRCNet model for handwritten word recognition directly in the compressed domain specifically focusing on JPEG format. The proposed model combines the Convolutional Neural Network (CNN) and Bi-Directional Long Short Term Memory (BiLSTM) based Recurrent Neural Network (RNN). Basically, we train the model using JPEG compressed word images and observe a very appealing performance with $89.05\%$ word recognition accuracy and $13.37\%$ character error rate.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.