Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Swift and Sure: Hardness-aware Contrastive Learning for Low-dimensional Knowledge Graph Embeddings (2201.00565v2)

Published 3 Jan 2022 in cs.LG and cs.AI

Abstract: Knowledge graph embedding (KGE) has shown great potential in automatic knowledge graph (KG) completion and knowledge-driven tasks. However, recent KGE models suffer from high training cost and large storage space, thus limiting their practicality in real-world applications. To address this challenge, based on the latest findings in the field of Contrastive Learning, we propose a novel KGE training framework called Hardness-aware Low-dimensional Embedding (HaLE). Instead of the traditional Negative Sampling, we design a new loss function based on query sampling that can balance two important training targets, Alignment and Uniformity. Furthermore, we analyze the hardness-aware ability of recent low-dimensional hyperbolic models and propose a lightweight hardness-aware activation mechanism. The experimental results show that in the limited training time, HaLE can effectively improve the performance and training speed of KGE models on five commonly-used datasets. After training just a few minutes, the HaLE-trained models are competitive compared to the state-of-the-art models in both low- and high-dimensional conditions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.