Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Enumeration Algorithms for Annotated Grammars (2201.00549v2)

Published 3 Jan 2022 in cs.FL and cs.DS

Abstract: We introduce annotated grammars, an extension of context-free grammars which allows annotations on terminals. Our model extends the standard notion of regular spanners, and is more expressive than the extraction grammars recently introduced by Peterfreund. We study the enumeration problem for annotated grammars: fixing a grammar, and given a string as input, enumerate all annotations of the string that form a word derivable from the grammar. Our first result is an algorithm for unambiguous annotated grammars, which preprocesses the input string in cubic time and enumerates all annotations with output-linear delay. This improves over Peterfreund's result, which needs quintic time preprocessing to achieve this delay bound. We then study how we can reduce the preprocessing time while keeping the same delay bound, by making additional assumptions on the grammar. Specifically, we present a class of grammars which only have one derivation shape for all outputs, for which we can enumerate with quadratic time preprocessing. We also give classes that generalize regular spanners for which linear time preprocessing suffices.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.