Papers
Topics
Authors
Recent
2000 character limit reached

Multi-view Subspace Adaptive Learning via Autoencoder and Attention (2201.00171v1)

Published 1 Jan 2022 in cs.LG and cs.CV

Abstract: Multi-view learning can cover all features of data samples more comprehensively, so multi-view learning has attracted widespread attention. Traditional subspace clustering methods, such as sparse subspace clustering (SSC) and low-ranking subspace clustering (LRSC), cluster the affinity matrix for a single view, thus ignoring the problem of fusion between views. In our article, we propose a new Multiview Subspace Adaptive Learning based on Attention and Autoencoder (MSALAA). This method combines a deep autoencoder and a method for aligning the self-representations of various views in Multi-view Low-Rank Sparse Subspace Clustering (MLRSSC), which can not only increase the capability to non-linearity fitting, but also can meets the principles of consistency and complementarity of multi-view learning. We empirically observe significant improvement over existing baseline methods on six real-life datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.