Papers
Topics
Authors
Recent
2000 character limit reached

Local Quadratic Convergence of Stochastic Gradient Descent with Adaptive Step Size (2112.14872v1)

Published 30 Dec 2021 in math.OC and cs.LG

Abstract: Establishing a fast rate of convergence for optimization methods is crucial to their applicability in practice. With the increasing popularity of deep learning over the past decade, stochastic gradient descent and its adaptive variants (e.g. Adagrad, Adam, etc.) have become prominent methods of choice for machine learning practitioners. While a large number of works have demonstrated that these first order optimization methods can achieve sub-linear or linear convergence, we establish local quadratic convergence for stochastic gradient descent with adaptive step size for problems such as matrix inversion.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.