Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Active Learning-Based Optimization of Scientific Experimental Design (2112.14811v1)

Published 29 Dec 2021 in cs.LG and cs.AI

Abstract: Active learning (AL) is a machine learning algorithm that can achieve greater accuracy with fewer labeled training instances, for having the ability to ask oracles to label the most valuable unlabeled data chosen iteratively and heuristically by query strategies. Scientific experiments nowadays, though becoming increasingly automated, are still suffering from human involvement in the designing process and the exhaustive search in the experimental space. This article performs a retrospective study on a drug response dataset using the proposed AL scheme comprised of the matrix factorization method of alternating least square (ALS) and deep neural networks (DNN). This article also proposes an AL query strategy based on expected loss minimization. As a result, the retrospective study demonstrates that scientific experimental design, instead of being manually set, can be optimized by AL, and the proposed query strategy ELM sampling shows better experimental performance than other ones such as random sampling and uncertainty sampling.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.