Lane Change Decision-Making through Deep Reinforcement Learning (2112.14705v1)
Abstract: Due to the complexity and volatility of the traffic environment, decision-making in autonomous driving is a significantly hard problem. In this project, we use a Deep Q-Network, along with rule-based constraints to make lane-changing decision. A safe and efficient lane change behavior may be obtained by combining high-level lateral decision-making with low-level rule-based trajectory monitoring. The agent is anticipated to perform appropriate lane-change maneuvers in a real-world-like udacity simulator after training it for a total of 100 episodes. The results shows that the rule-based DQN performs better than the DQN method. The rule-based DQN achieves a safety rate of 0.8 and average speed of 47 MPH
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.