Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Universal Online Learning with Bounded Loss: Reduction to Binary Classification (2112.14638v2)

Published 29 Dec 2021 in cs.LG and stat.ML

Abstract: We study universal consistency of non-i.i.d. processes in the context of online learning. A stochastic process is said to admit universal consistency if there exists a learner that achieves vanishing average loss for any measurable response function on this process. When the loss function is unbounded, Blanchard et al. showed that the only processes admitting strong universal consistency are those taking a finite number of values almost surely. However, when the loss function is bounded, the class of processes admitting strong universal consistency is much richer and its characterization could be dependent on the response setting (Hanneke). In this paper, we show that this class of processes is independent from the response setting thereby closing an open question (Hanneke, Open Problem 3). Specifically, we show that the class of processes that admit universal online learning is the same for binary classification as for multiclass classification with countable number of classes. Consequently, any output setting with bounded loss can be reduced to binary classification. Our reduction is constructive and practical. Indeed, we show that the nearest neighbor algorithm is transported by our construction. For binary classification on a process admitting strong universal learning, we prove that nearest neighbor successfully learns at least all finite unions of intervals.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.