Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DP-FP: Differentially Private Forward Propagation for Large Models (2112.14430v1)

Published 29 Dec 2021 in cs.LG and cs.CR

Abstract: When applied to large-scale learning problems, the conventional wisdom on privacy-preserving deep learning, known as Differential Private Stochastic Gradient Descent (DP-SGD), has met with limited success due to significant performance degradation and high memory overhead when compared to the non-privacy counterpart. We show how to mitigate the performance drop by replacing the DP-SGD with a novel DP Forward-Propagation (DP-FP) followed by an off-the-shelf non-DP optimizer. Our DP-FP employs novel (1) representation clipping followed by noise addition in the forward propagation stage, as well as (2) micro-batch construction via subsampling to achieve DP amplification and reduce noise power to $1/M$, where $M$ is the number of micro-batch in a step. When training a classification model, our DP-FP with all of the privacy-preserving operations on the representation is innately free of gradient bias, total noise proportionally to model size, and memory issues in DP-SGD. As a result, our DP-FP outperforms cutting-edge DP-SGD while retaining the same level of privacy, and it approaches non-private baselines and significantly outperforms state-of-the-art DP-SGD variants. When applied to RoBERTa-large on four downstream tasks, for example, DP-FP achieves an average accuracy of 91.34\% with privacy budgets less than 3, representing a 3.81\% performance improvement over the state-of-the-art DP-SGD and only a 0.9\% loss compared to the non-private baseline but with a significantly lower privacy leakage risk.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube