Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Control Theoretic Analysis of Temporal Difference Learning (2112.14417v6)

Published 29 Dec 2021 in cs.AI, cs.LG, cs.SY, and eess.SY

Abstract: The goal of this manuscript is to conduct a controltheoretic analysis of Temporal Difference (TD) learning algorithms. TD-learning serves as a cornerstone in the realm of reinforcement learning, offering a methodology for approximating the value function associated with a given policy in a Markov Decision Process. Despite several existing works that have contributed to the theoretical understanding of TD-learning, it is only in recent years that researchers have been able to establish concrete guarantees on its statistical efficiency. In this paper, we introduce a finite-time, control-theoretic framework for analyzing TD-learning, leveraging established concepts from the field of linear systems control. Consequently, this paper provides additional insights into the mechanics of TD learning and the broader landscape of reinforcement learning, all while employing straightforward analytical tools derived from control theory.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.