Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multitask Learning and Bandits via Robust Statistics (2112.14233v5)

Published 28 Dec 2021 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Decision-makers often simultaneously face many related but heterogeneous learning problems. For instance, a large retailer may wish to learn product demand at different stores to solve pricing or inventory problems, making it desirable to learn jointly for stores serving similar customers; alternatively, a hospital network may wish to learn patient risk at different providers to allocate personalized interventions, making it desirable to learn jointly for hospitals serving similar patient populations. Motivated by real datasets, we study a natural setting where the unknown parameter in each learning instance can be decomposed into a shared global parameter plus a sparse instance-specific term. We propose a novel two-stage multitask learning estimator that exploits this structure in a sample-efficient way, using a unique combination of robust statistics (to learn across similar instances) and LASSO regression (to debias the results). Our estimator yields improved sample complexity bounds in the feature dimension $d$ relative to commonly-employed estimators; this improvement is exponential for "data-poor" instances, which benefit the most from multitask learning. We illustrate the utility of these results for online learning by embedding our multitask estimator within simultaneous contextual bandit algorithms. We specify a dynamic calibration of our estimator to appropriately balance the bias-variance tradeoff over time, improving the resulting regret bounds in the context dimension $d$. Finally, we illustrate the value of our approach on synthetic and real datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper: