Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Non-Convex Joint Community Detection and Group Synchronization via Generalized Power Method (2112.14204v1)

Published 28 Dec 2021 in math.OC, cs.LG, and stat.ML

Abstract: This paper proposes a Generalized Power Method (GPM) to tackle the problem of community detection and group synchronization simultaneously in a direct non-convex manner. Under the stochastic group block model (SGBM), theoretical analysis indicates that the algorithm is able to exactly recover the ground truth in $O(n\log2n)$ time, sharply outperforming the benchmark method of semidefinite programming (SDP) in $O(n{3.5})$ time. Moreover, a lower bound of parameters is given as a necessary condition for exact recovery of GPM. The new bound breaches the information-theoretic threshold for pure community detection under the stochastic block model (SBM), thus demonstrating the superiority of our simultaneous optimization algorithm over the trivial two-stage method which performs the two tasks in succession. We also conduct numerical experiments on GPM and SDP to evidence and complement our theoretical analysis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.