Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards continual task learning in artificial neural networks: current approaches and insights from neuroscience (2112.14146v1)

Published 28 Dec 2021 in cs.LG and cs.AI

Abstract: The innate capacity of humans and other animals to learn a diverse, and often interfering, range of knowledge and skills throughout their lifespan is a haLLMark of natural intelligence, with obvious evolutionary motivations. In parallel, the ability of artificial neural networks (ANNs) to learn across a range of tasks and domains, combining and re-using learned representations where required, is a clear goal of artificial intelligence. This capacity, widely described as continual learning, has become a prolific subfield of research in machine learning. Despite the numerous successes of deep learning in recent years, across domains ranging from image recognition to machine translation, such continual task learning has proved challenging. Neural networks trained on multiple tasks in sequence with stochastic gradient descent often suffer from representational interference, whereby the learned weights for a given task effectively overwrite those of previous tasks in a process termed catastrophic forgetting. This represents a major impediment to the development of more generalised artificial learning systems, capable of accumulating knowledge over time and task space, in a manner analogous to humans. A repository of selected papers and implementations accompanying this review can be found at https://github.com/mccaffary/continual-learning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com