Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SPIDER: Searching Personalized Neural Architecture for Federated Learning (2112.13939v1)

Published 27 Dec 2021 in cs.LG and cs.CV

Abstract: Federated learning (FL) is an efficient learning framework that assists distributed machine learning when data cannot be shared with a centralized server due to privacy and regulatory restrictions. Recent advancements in FL use predefined architecture-based learning for all the clients. However, given that clients' data are invisible to the server and data distributions are non-identical across clients, a predefined architecture discovered in a centralized setting may not be an optimal solution for all the clients in FL. Motivated by this challenge, in this work, we introduce SPIDER, an algorithmic framework that aims to Search Personalized neural architecture for federated learning. SPIDER is designed based on two unique features: (1) alternately optimizing one architecture-homogeneous global model (Supernet) in a generic FL manner and one architecture-heterogeneous local model that is connected to the global model by weight sharing-based regularization (2) achieving architecture-heterogeneous local model by a novel neural architecture search (NAS) method that can select optimal subnet progressively using operation-level perturbation on the accuracy value as the criterion. Experimental results demonstrate that SPIDER outperforms other state-of-the-art personalization methods, and the searched personalized architectures are more inference efficient.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.