Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Last-Iterate Convergence of Saddle-Point Optimizers via High-Resolution Differential Equations (2112.13826v3)

Published 27 Dec 2021 in math.OC, cs.LG, and stat.ML

Abstract: Several widely-used first-order saddle-point optimization methods yield an identical continuous-time ordinary differential equation (ODE) that is identical to that of the Gradient Descent Ascent (GDA) method when derived naively. However, the convergence properties of these methods are qualitatively different, even on simple bilinear games. Thus the ODE perspective, which has proved powerful in analyzing single-objective optimization methods, has not played a similar role in saddle-point optimization. We adopt a framework studied in fluid dynamics -- known as High-Resolution Differential Equations (HRDEs) -- to design differential equation models for several saddle-point optimization methods. Critically, these HRDEs are distinct for various saddle-point optimization methods. Moreover, in bilinear games, the convergence properties of the HRDEs match the qualitative features of the corresponding discrete methods. Additionally, we show that the HRDE of Optimistic Gradient Descent Ascent (OGDA) exhibits \emph{last-iterate convergence} for general monotone variational inequalities. Finally, we provide rates of convergence for the \emph{best-iterate convergence} of the OGDA method, relying solely on the first-order smoothness of the monotone operator.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.