Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Few-Shot Classification in Unseen Domains by Episodic Meta-Learning Across Visual Domains (2112.13539v1)

Published 27 Dec 2021 in cs.CV

Abstract: Few-shot classification aims to carry out classification given only few labeled examples for the categories of interest. Though several approaches have been proposed, most existing few-shot learning (FSL) models assume that base and novel classes are drawn from the same data domain. When it comes to recognizing novel-class data in an unseen domain, this becomes an even more challenging task of domain generalized few-shot classification. In this paper, we present a unique learning framework for domain-generalized few-shot classification, where base classes are from homogeneous multiple source domains, while novel classes to be recognized are from target domains which are not seen during training. By advancing meta-learning strategies, our learning framework exploits data across multiple source domains to capture domain-invariant features, with FSL ability introduced by metric-learning based mechanisms across support and query data. We conduct extensive experiments to verify the effectiveness of our proposed learning framework and show learning from small yet homogeneous source data is able to perform preferably against learning from large-scale one. Moreover, we provide insights into choices of backbone models for domain-generalized few-shot classification.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube