Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Block Modeling-Guided Graph Convolutional Neural Networks (2112.13507v2)

Published 27 Dec 2021 in cs.LG and cs.SI

Abstract: Graph Convolutional Network (GCN) has shown remarkable potential of exploring graph representation. However, the GCN aggregating mechanism fails to generalize to networks with heterophily where most nodes have neighbors from different classes, which commonly exists in real-world networks. In order to make the propagation and aggregation mechanism of GCN suitable for both homophily and heterophily (or even their mixture), we introduce block modeling into the framework of GCN so that it can realize "block-guided classified aggregation", and automatically learn the corresponding aggregation rules for neighbors of different classes. By incorporating block modeling into the aggregation process, GCN is able to aggregate information from homophilic and heterophilic neighbors discriminately according to their homophily degree. We compared our algorithm with state-of-art methods which deal with the heterophily problem. Empirical results demonstrate the superiority of our new approach over existing methods in heterophilic datasets while maintaining a competitive performance in homophilic datasets.

Citations (57)

Summary

We haven't generated a summary for this paper yet.