Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Miti-DETR: Object Detection based on Transformers with Mitigatory Self-Attention Convergence (2112.13310v1)

Published 26 Dec 2021 in cs.CV

Abstract: Object Detection with Transformers (DETR) and related works reach or even surpass the highly-optimized Faster-RCNN baseline with self-attention network architectures. Inspired by the evidence that pure self-attention possesses a strong inductive bias that leads to the transformer losing the expressive power with respect to network depth, we propose a transformer architecture with a mitigatory self-attention mechanism by applying possible direct mapping connections in the transformer architecture to mitigate the rank collapse so as to counteract feature expression loss and enhance the model performance. We apply this proposal in object detection tasks and develop a model named Miti-DETR. Miti-DETR reserves the inputs of each single attention layer to the outputs of that layer so that the "non-attention" information has participated in any attention propagation. The formed residual self-attention network addresses two critical issues: (1) stop the self-attention networks from degenerating to rank-1 to the maximized degree; and (2) further diversify the path distribution of parameter update so that easier attention learning is expected. Miti-DETR significantly enhances the average detection precision and convergence speed towards existing DETR-based models on the challenging COCO object detection dataset. Moreover, the proposed transformer with the residual self-attention network can be easily generalized or plugged in other related task models without specific customization.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.